
Project: Mida Token
Platform: Ethereum
Language: Solidity
Date: April 27th, 2023

Table of contents
Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 14

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 26

● Solidity static analysis ….……………………………………………………………….. 29

● Solhint Linter …………………………………………………………………….……….. 34

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Mida to perform the Security audit of the Mida token
smart contracts code. The audit has been performed using manual analysis as well as
using automated software tools. This report presents all the findings regarding the audit
performed on April 27th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Mida Token is a NFT smart contract which has mint, bulkBurn, burn, enterMine,

exitMine functionalities.

● There are 4 smart contracts, which were included in the audit scope. And there

were some standard library code such as OpenZepelin, which were excluded.

Because those standard library code is considered as time tested and community

audited, so we can safely ignore them.

Audit scope

Name Code Review and Security Analysis Report for
Mida token Smart Contracts

Platform Ethereum / Solidity

File 1 Mida.sol

File 1 MD5 Hash 06C988460522AC81D1416FD71666F3B1

Updated File 1 MD5 Hash 5A2BAF6378EF48FC48164EE1F10AA4CE

File 1 Online Code Link 0x57d8dc5eF3762395AB1E842473354CEc9Ab14f5B

File 2 MTM.sol

File 2 MD5 Hash CF1B00D238BB75868C83F99C7D297F45

Updated File 2 MD5 Hash 2A91F1A05962CE3E93C74162EE528027

File 2 Online Code Link 0xF9ea27d6248D2c0B0b064c19E7b532BBb9fEC50a

File 3 Mineable.sol

File 3 MD5 Hash 512FB7E9C79BD90841886E612D6F9F86

File 4 MShareCalculable.sol

File 4 MD5 Hash D98CACCD509173E821FEE96477FEAD1A

Updated File 4 MD5 Hash 76E948A6F361018251A174FD200F68BB

Audit Date April 27th, 2023

Revised Audit Date May 4th, 2023

https://etherscan.io/address/0x57d8dc5eF3762395AB1E842473354CEc9Ab14f5B
https://etherscan.io/address/0xF9ea27d6248D2c0B0b064c19E7b532BBb9fEC50a

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Mida.sol
● Name: Mida

● Symbol: MIDA

● Decimals: 6

● Total Supply: 42 trillion

● Total Mineable Supply: 21 trillion

● 1 MShare: 694,200

YES, This is valid.

File 2 MTM.sol
● Name: Mida Token Miner

● Symbol: MTM

Owner Specifications:
● MTM token removed from total supply by the owner.

● Mint this MTM back to the owner.

YES, This is valid.

File 3 Mineable.sol
● Init Reload Period: 5 days

● Mining Duration: 30 days

● Reload Period: 2 days

YES, This is valid.

File 4 MShareCalculable.sol
● Mshare Decimals: 6

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts does not contain owner control, which makes them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 6 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 4 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Mida Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Mida Protocol.

The Mida token team has provided unit test scripts, which helped to determine the integrity

of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given an Mida Protocol smart contract code in the form of a file. The hash of that

code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

Mida.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 totalSupply read Passed No Issue
3 balanceOf read Passed No Issue
4 transfer write Passed No Issue
5 allowance read Passed No Issue
6 approve write Passed No Issue
7 transferFrom write Passed No Issue
8 increaseAllowance write Passed No Issue
9 decreaseAllowance write Passed No Issue
10 _transfer internal Passed No Issue
11 _mint internal Passed No Issue
12 _burn internal Passed No Issue
13 _approve internal Passed No Issue
14 _spendAllowance internal Passed No Issue
15 _beforeTokenTransfer internal Passed No Issue
16 _afterTokenTransfer internal Passed No Issue
17 nonReentrant modifier Passed No Issue
18 _nonReentrantBefore write Passed No Issue
19 _nonReentrantAfter write Passed No Issue
20 _reentrancyGuardEntered internal Passed No Issue
21 minerStart write Passed No Issue
21 minerEnd write Passed No Issue
22 _minerStart write Passed No Issue
23 _minerEnd write Passed No Issue
24 _verifyMinerStart read Passed No Issue
25 _verifyMinerEnd read Passed No Issue
26 shouldStartMiner read Passed No Issue
27 shouldEndMiner read Passed No Issue
28 _timeToChangeStatus read Passed No Issue
29 notMining modifier Passed No Issue
30 minerStartable modifier Passed No Issue
31 minerEndable modifier Passed No Issue
32 onlyReload modifier Passed No Issue
33 maxSupplyNotReached modifier Passed No Issue
34 maxSupply write Passed No Issue
35 mineableSupply write Passed No Issue
36 enterMine external Passed No Issue
37 continueMining external Passed No Issue
38 exitMine external Passed No Issue
39 _enterMine internal Passed No Issue

40 _reEnterMine internal Passed No Issue
41 _claimRewards internal Passed No Issue
42 _retreiveMtms internal Passed No Issue
43 _verifyRewards internal Passed No Issue

MTM.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 _nonReentrantBefore write Passed No Issue
4 _nonReentrantAfter write Passed No Issue
5 _reentrancyGuardEntered internal Passed No Issue
6 supportsInterface read Passed No Issue
7 balanceOf read Passed No Issue
8 ownerOf read Passed No Issue
9 name read Passed No Issue
10 symbol read Passed No Issue
11 tokenURI read Passed No Issue
12 _baseURI internal Passed No Issue
13 approve write Passed No Issue
14 getApproved read Passed No Issue
15 setApprovalForAll write Passed No Issue
16 isApprovedForAll read Passed No Issue
17 transferFrom write Passed No Issue
18 safeTransferFrom write Passed No Issue
19 safeTransferFrom write Passed No Issue
20 _safeTransfer internal Passed No Issue
21 _ownerOf internal Passed No Issue
21 _exists internal Passed No Issue
22 _isApprovedOrOwner internal Passed No Issue
23 _safeMint internal Passed No Issue
24 _safeMint internal Passed No Issue
25 _mint internal Passed No Issue
26 _burn internal Passed No Issue
27 _transfer internal Passed No Issue
28 _approve internal Passed No Issue
29 _setApprovalForAll internal Passed No Issue
30 _requireMinted internal Passed No Issue
31 _checkOnERC721Received write Passed No Issue
32 _beforeTokenTransfer internal Passed No Issue
33 _afterTokenTransfer internal Passed No Issue
34 __unsafe_increaseBalance internal Passed No Issue
35 isTokenAvailableForMTM read Passed No Issue
36 _tokenToUSDPrice internal Passed No Issue

37 _getTokenAddressFromPair read Passed No Issue
38 _getUSDPrice read Passed No Issue
39 onlyOwner modifier Passed No Issue
40 owner external Passed No Issue
41 calcTokenAmt read Function input

parameters lack of
check

Refer Audit
Findings

42 calcMTMPoints read Function input
parameters lack of

check

Refer Audit
Findings

43 mint external Passed No Issue
44 _mintSingle write Passed No Issue
45 bulkBurn external Passed No Issue
46 burn write Passed No Issue
47 enterMine external access only Owner No Issue
48 exitMine external access only Owner No Issue
49 _mtmMintIsOver internal Passed No Issue
50 tokenURI read Passed No Issue
51 _substr write Passed No Issue

MShareCalculable.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 isTokenAvailableForMTM read Passed No Issue
3 _tokenToUSDPrice internal Passed No Issue
4 _getTokenAddressFromPair read Passed No Issue
5 _getUSDPrice read Passed No Issue
6 getV2TokenPrice read Passed No Issue
7 ethV2Price internal Passed No Issue
8 getV2TokenAddressFromPair internal Passed No Issue
9 getV3TokenPrice internal Passed No Issue
10 etherV3Price internal Passed No Issue
11 getV3TokenAddressFromPair internal Passed No Issue
12 getSqrtTwapX96 internal Passed No Issue
13 getPriceX96FromSqrtPriceX96 internal Passed No Issue

Mineable.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 _nonReentrantBefore write Passed No Issue
4 _nonReentrantAfter write Passed No Issue
5 _reentrancyGuardEntered internal Passed No Issue
6 minerStart write Passed No Issue
7 minerEnd write Passed No Issue
8 _minerStart write Passed No Issue
9 _minerEnd write Passed No Issue
10 _verifyMinerStart read Passed No Issue
11 _verifyMinerEnd read Passed No Issue
12 shouldStartMiner read Passed No Issue
13 shouldEndMiner read Passed No Issue
14 _timeToChangeStatus read Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found in the revised contract code.

High Severity

No high severity vulnerabilities were found in the revised contract code.

Medium

No medium severity vulnerabilities were found in the revised contract code.

Low

(1) In the _claimRewards() function, "_ownerMiner.rewards" should be stored in a local

variable, and do "_ownerMiner.rewards = uint128(0);" before

"_mint(_msgSender(), _ownerMiner.rewards);" for good practice. - Mida.sol

Function: _claimRewards()

Status: Fixed

(2) "_verifyRewards()" requires null validation for "uint128 midaMining" to save gas

consumption.- Mida.sol
Status: Fixed

(3) Emit Events for all functions.- Mida.sol, MTM.sol

Status: Fixed. Events have been emitted for Mida contract only.

(4) Multiplication before division: MShareCalculable.sol
In the "_tokenToUSDPrice()", line 65 should do multiplication before division.

Status: Fixed

(5) Possible gas consuming loop: - Mida.sol
Function: _enterMine()Status: Fixed

In the "_enterMine()" function, "mtmIds[i]" can be stored in a local variable and used

multiple times to save gas consumption.

Status: Fixed

(6) Function input parameters lack of check: - MTM.sol

"calcTokenAmt()" and calcMTMPoints() functions check requires input parameters.

Status: Acknowledged

Very Low / Informational / Best practices:

No Informational severity vulnerabilities were found in the revised contract code.

Centralization
MTM smart contract is owned by Mida and Mida does not have any owner functions

So there is no centralization issue.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We had observed 6 low severity issues in the smart

contracts. All the issues have been resolved / acknowledged in the revised code. So, the
smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Mida token

Mida Diagram

MTM Diagram

Mineable Diagram

MShareCalculable Diagram

Slither Results Log

Slither log >> Mida.sol

Slither log >> MTM.sol

Slither log >> Mineable.sol

Slither log >> MShareCalculable.sol

Solidity Static Analysis

Mida.sol

MTM.sol

Mineable.sol

MShareCalculable.sol

Solhint Linter

Mida.sol

Mida.sol:49:23: Error: Parse error: mismatched input '(' expecting
{';', '='}
Mida.sol:50:30: Error: Parse error: mismatched input '(' expecting
{';', '='}
Mida.sol:61:26: Error: Parse error: mismatched input '(' expecting
{';', '='}
Mida.sol:85:46: Error: Parse error: mismatched input '(' expecting
{';', '='}
Mida.sol:93:38: Error: Parse error: mismatched input '(' expecting
{';', '='}
Mida.sol:164:30: Error: Parse error: mismatched input '(' expecting
{';', '='}
Mida.sol:175:16: Error: Parse error: missing ';' at '{'
Mida.sol:199:30: Error: Parse error: mismatched input '(' expecting
{';', '='}
Mida.sol:206:16: Error: Parse error: missing ';' at '{'
Mida.sol:225:29: Error: Parse error: mismatched input '(' expecting
{';', '='}
Mida.sol:245:16: Error: Parse error: missing ';' at '{'

MTM.sol

MTM.sol:38:8: Error: Parse error: extraneous input '{' expecting
{'from', 'calldata', 'callback', 'leave', 'payable', 'receive',
Identifier}
MTM.sol:38:62: Error: Parse error: mismatched input '.' expecting
{';', '='}
MTM.sol:38:68: Error: Parse error: mismatched input '}' expecting
{'from', 'calldata', 'callback', 'override', 'constant', 'immutable',
'leave', 'internal', 'payable', 'private', 'public', 'receive',
Identifier}
MTM.sol:38:70: Error: Parse error: extraneous input 'for' expecting
{<EOF>, 'pragma', 'import', 'from', 'abstract', 'contract',
'interface', 'library', 'struct', 'function', 'enum', 'address',
'mapping', 'calldata', 'var', 'bool', 'string', 'byte', 'callback',
Int, Uint, Byte, Fixed, Ufixed, 'leave', 'payable', 'constructor',
'fallback', 'receive', Identifier}
MTM.sol:38:81: Error: Parse error: mismatched input ';' expecting
'constant'
MTM.sol:62:45: Error: Parse error: mismatched input ';' expecting
'constant'
MTM.sol:64:15: Error: Parse error: mismatched input '(' expecting
'constant'
MTM.sol:64:21: Error: Parse error: missing 'constant' at
'mtmVariables'
MTM.sol:64:33: Error: Parse error: mismatched input ',' expecting '='
MTM.sol:66:8: Error: Parse error: missing 'constant' at

'MTMMintIsOver'
MTM.sol:66:21: Error: Parse error: missing '=' at '('
MTM.sol:67:8: Error: Parse error: missing 'constant' at
'InsuffucentAllowanceForTokenPOP'
MTM.sol:73:13: Error: Parse error: missing 'constant' at 'NotOwner'
MTM.sol:73:21: Error: Parse error: missing '=' at '('
MTM.sol:74:4: Error: Parse error: extraneous input '}' expecting
{<EOF>, 'pragma', 'import', 'from', 'abstract', 'contract',
'interface', 'library', 'struct', 'function', 'enum', 'address',
'mapping', 'calldata', 'var', 'bool', 'string', 'byte', 'callback',
Int, Uint, Byte, Fixed, Ufixed, 'leave', 'payable', 'constructor',
'fallback', 'receive', Identifier}
MTM.sol:75:5: Error: Parse error: mismatched input ';' expecting
'constant'
MTM.sol:117:16: Error: Parse error: missing ';' at '{'
MTM.sol:129:26: Error: Parse error: mismatched input '(' expecting
{';', '='}
MTM.sol:174:16: Error: Parse error: missing ';' at '{'
MTM.sol:305:0: Error: Parse error: extraneous input '}' expecting
{<EOF>, 'pragma', 'import', 'from', 'abstract', 'contract',
'interface', 'library', 'struct', 'function', 'enum', 'address',
'mapping', 'calldata', 'var', 'bool', 'string', 'byte', 'callback',
Int, Uint, Byte, Fixed, Ufixed, 'leave', 'payable', 'constructor',
'fallback', 'receive', Identifier}

Mineable.sol

Mineable.sol:30:22: Error: Parse error: mismatched input '('
expecting {';', '='}
Mineable.sol:80:32: Error: Parse error: mismatched input '('
expecting {';', '='}
Mineable.sol:85:35: Error: Parse error: mismatched input '('
expecting {';', '='}
Mineable.sol:90:27: Error: Parse error: mismatched input '('
expecting {';', '='}
Mineable.sol:97:30: Error: Parse error: mismatched input '('
expecting {';', '='}
Mineable.sol:102:33: Error: Parse error: mismatched input '('
expecting {';', '='}

MShareCalculable.sol

MShareCalculable.sol:11:8: Error: Parse error: extraneous input '{'
expecting {'from', 'calldata', 'callback', 'leave', 'payable',
'receive', Identifier}
MShareCalculable.sol:11:20: Error: Parse error: mismatched input '.'
expecting 'for'
MShareCalculable.sol:11:29: Error: Parse error: extraneous input ','
expecting {'from', 'calldata', 'callback', 'override', 'constant',
'immutable', 'leave', 'internal', 'payable', 'private', 'public',
'receive', Identifier}
MShareCalculable.sol:11:41: Error: Parse error: mismatched input '.'

expecting {';', '='}
MShareCalculable.sol:11:49: Error: Parse error: extraneous input ','
expecting {'from', 'calldata', 'callback', 'override', 'constant',
'immutable', 'leave', 'internal', 'payable', 'private', 'public',
'receive', Identifier}
MShareCalculable.sol:11:61: Error: Parse error: mismatched input '.'
expecting {';', '='}
MShareCalculable.sol:19:47: Error: Parse error: mismatched input ')'
expecting '='
MShareCalculable.sol:40:16: Error: Parse error: missing ';' at '{'
MShareCalculable.sol:99:0: Error: Parse error: extraneous input '}'
expecting {<EOF>, 'pragma', 'import', 'from', 'abstract', 'contract',
'interface', 'library', 'struct', 'function', 'enum', 'address',
'mapping', 'calldata', 'var', 'bool', 'string', 'byte', 'callback',
Int, Uint, Byte, Fixed, Ufixed, 'leave', 'payable', 'constructor',
'fallback', 'receive', Identifier}

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

